Soft and Hard Wall in a Stochastic Reaction Diffusion Equation
نویسنده
چکیده
We consider a stochastically perturbed reaction diffusion equation in a bounded interval, with boundary conditions imposing the two stable phases at the endpoints. We investigate the asymptotic behavior of the front separating the two stable phases, as the intensity of the noise vanishes and the size of the interval diverges. In particular, we prove that, in a suitable scaling limit, the front evolves according to a one-dimensional diffusion process with a non-linear drift accounting for a “soft” repulsion from the boundary. We finally show how a “hard” repulsion can be obtained by an extra diffusive scaling.
منابع مشابه
Generating function, path integral representation, and equivalence for stochastic exclusive particle systems.
We present the path integral representation of the generating function for classical exclusive particle systems. By introducing hard-core bosonic creation and annihilation operators and appropriate commutation relations, we construct the Fock space structure. Using the state vector, the generating function is defined and the master equation of the system is transformed into the equation for the...
متن کاملStochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients
It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...
متن کاملField theory for reaction-diffusion processes with hard-core particles.
We show how to build up a systematic bosonic field theory for a general reaction-diffusion process involving hard-core particles in arbitrary dimension. We discuss a recent approach proposed by Park, Kim, and Park [Phys. Rev. E 62, 7642 (2000)]. As a test bench for our method, we show how to recover the equivalence between asymmetric diffusion of excluding particles and the noisy Burgers equation.
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006